Transitive Hashing Network for Heterogeneous Multimedia Retrieval
نویسندگان
چکیده
Hashing has been widely applied to large-scale multimedia retrieval due to the storage and retrieval efficiency. Cross-modal hashing enables efficient retrieval from database of one modality in response to a query of another modality. Existing work on cross-modal hashing assumes heterogeneous relationship across modalities for hash function learning. In this paper, we relax the strong assumption by only requiring such heterogeneous relationship in an auxiliary dataset different from the query/database domain. We craft a hybrid deep architecture to simultaneously learn the cross-modal correlation from the auxiliary dataset, and align the dataset distributions between the auxiliary dataset and the query/database domain, which generates transitive hash codes for heterogeneous multimedia retrieval. Extensive experiments exhibit that the proposed approach yields state of the art multimedia retrieval performance on public datasets, i.e. NUS-WIDE, ImageNet-YahooQA.
منابع مشابه
Learning Decorrelated Hashing Codes for Multimodal Retrieval
In social networks, heterogeneous multimedia data correlate to each other, such as videos and their corresponding tags in YouTube and image-text pairs in Facebook. Nearest neighbor retrieval across multiple modalities on large data sets becomes a hot yet challenging problem. Hashing is expected to be an efficient solution, since it represents data as binary codes. As the bit-wise XOR operations...
متن کاملUnsupervised Generative Adversarial Cross-modal Hashing
Cross-modal hashing aims to map heterogeneous multimedia data into a common Hamming space, which can realize fast and flexible retrieval across different modalities. Unsupervised cross-modal hashing is more flexible and applicable than supervised methods, since no intensive labeling work is involved. However, existing unsupervised methods learn hashing functions by preserving inter and intra co...
متن کاملUnsupervised Cross-Media Hashing with Structure Preservation
Recent years have seen the exponential growth of heterogeneous multimedia data. The need for effective and accurate data retrieval from heterogeneous data sources has attracted much research interest in cross-media retrieval. Here, given a query of any media type, cross-media retrieval seeks to find relevant results of different media types from heterogeneous data sources. To facilitate large-s...
متن کاملDiscriminative Cross-View Binary Representation Learning
Learning compact representation is vital and challenging for large scale multimedia data. Cross-view/crossmodal hashing for effective binary representation learning has received significant attention with exponentially growing availability of multimedia content. Most existing crossview hashing algorithms emphasize the similarities in individual views, which are then connected via cross-view sim...
متن کاملDeep Hashing Network for Efficient Similarity Retrieval
Due to the storage and retrieval efficiency, hashing has been widely deployed to approximate nearest neighbor search for large-scale multimedia retrieval. Supervised hashing, which improves the quality of hash coding by exploiting the semantic similarity on data pairs, has received increasing attention recently. For most existing supervised hashing methods for image retrieval, an image is first...
متن کامل